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The effect of periodic surface pressure on a rectangular elastic
plate floating on shallow water�
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Abstract

The steady-state behaviour of a floating elastic plate of bounded dimensions acted upon by a localized external load is investigated
using linear shallow water theory. In the case of a plate of arbitrary shape, the problem reduces to solving a system of boundary-value
integral equations supplemented with differential relations for the free edge of the plate. Using a rectangular plate as the example,
the effect of the frequency of the periodic actions and the positions at which they are applied on the amplitudes of the normal flexures
of the plate and of the directional pattern of surface waves far from the plate is investigated. It is shown that waveguide properties
occur for an elongated plate.
© 2006 Elsevier Ltd. All rights reserved.

When determining the stability of large floating platforms of the floating-airport type (see Ref. 1, for example), an
investigation of the effect of an unsteady external force on them is of interest. The simplest case of such action is a
periodic pressure on the platform, which is usually simulated by a thin elastic plate.

The steady oscillations of a floating elastic plate when acted upon by a periodic load have been considered in a
linear formulation in Ref. 2. In the planar case, a solution has been proposed for a girder plate of finite and semi-
infinite length and, in the three-dimensional case, for a circular plate. Comparison of the solutions for shallow water
and for a liquid of finite depth showed good agreement between them in the case of relatively low frequencies. The
use of the shallow-water approximation and the method of boundary-value integral equations enables one to consider
the problem of the action of periodic external pressures on a plate of arbitrary shape in a similar way to what was
done independently in Refs. 3,4 in the case of a diffraction problem. The Green-Naghdi model was used in Ref. 3
which enables one to extend the domain of applicability of conventional shallow water theory somewhat to shorter
waves.

In this paper, the linear hydroelastic problem of the action of periodic surface pressures on a plate of arbitrary shape
is investigated for the case of a rectangular plate, since a rectangular shape for a floating platform is most frequently
considered for practical application and, moreover, an elastic platform, in the form of a strip of constant width and
infinite length, floating on shallow water can possess waveguide properties in the case of non-zero immersion.5 An
investigation of the effect of the finite length of a rectangular plate on the manifestation of waveguide properties is of
interest.
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1. Formulation of the problem

A rectangular homogeneous elastic plate of length 2L and width 2B floats on the surface of a layer of an ideal
incompressible liquid of depth h. The surface of the liquid not covered by the plate is free. We will denote the domain
of the horizontal variables x and y occupied by the plate by � and the domain outside the plate by �2. The origin of
coordinates is located at the centre of the domain �1 which is defined by the conditions y ≤ L. Correspondingly, the
domain �2 is defined by the conditions |x| > B, |y| > L.

We will assume that a normal pressure, periodic in time with frequency �, acts on the plate. We will investigate the
oscillations of the liquid and the plate, caused by this pressure. The motion of the liquid is assumed to be potential and
the velocity of the fluid particles and the flexure of the plate are assumed to be small.

(1.1)

Assuming that the motions of the liquid and the plate are steady motions in time, we will correspondingly seek the
velocity potentials �j (x, y, t) of the liquid in the domains �j (j = 1, 2) in the form

The normal flexure of the plate

is described by the equation

(1.2)

where D is the cylindrical stiffness of the plate, h1 is its thickness, �1 is the density of the material, � is the liquid
density, g is the acceleration due to gravity and � ≡ ∂2/∂x2 + ∂2/∂y2.

The relation

(1.3)

holds in the case of shallow water, where d = �1h1/� is the immersion of the plate. The velocity potential in the domain
of free water �2 satisfies the equation

(1.4)

The elevation of the free surface

is determined from the relation

Matching conditions, which imply the continuity of the pressure and the mass flow,

(1.5)

must be satisfied on the contour of the plate S, where n is the direction of the normal to the contour S.
It is assumed that the plate edges are free, that is, the bending moment and the shearing force at the edges are equal

to zero. In the case of a rectangular plate, the free edge conditions have the form (in the case of a plate of arbitrary
shape, see 2,4, for example)

(1.6)

where s is the arc coordinate of the contour S and � is Poisson’s ratio of the plate.
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The conditions for the bending moment of the concentrated shearing force to be compensated

(1.7)

must be satisfied at the corner points of the plate.
Far from the plate, it is necessary to take account of the radiation condition

which implies that there are no incoming waves.
We next change to dimensionless variables, taking the depth of the tank h as the scale of length and

√
h/g as the

time scale, that is

2. Method of solution

Equations (1.2) and (1.4) in dimensionless variables have the form

(2.1)

(2.2)

where

We will seek the solution of Eq. (2.1) in the form (henceforth summation is carried out from m = 1 to m = 3)

(2.3)

The functions Ψm(x̄, ȳ) (m = 1, 2, 3) satisfy the equation

(2.4)

and the quantities �m are the roots of the equation (for greater detail, see 3,4)

(2.5)

We will denote the real positive root of this equation by �1 and the two complex-conjugate roots, located in the first
and fourth quadrants of the complex � plane by �2 and �3 respectively.

The function Φ0(x̄, ȳ) is the solution in dimensionless form of the problem of the action of a periodic pressure on
an unbounded elastic plate in the shallow-water approximation.

For simplicity, we will next assume that the pressure P(x, y) in (1.1) depends solely on the quantity R =√
(x − x0)2 + (y − y0)2, where x0 and y0 are the coordinates of the centre of the domain of application of the external

pressure, that is,

Here a is a factor which has the dimension of time and the function f (R) is dimensionless.
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The function Φ0(x̄, ȳ) has the form (for more detail, see 2)

where f̃ (k) is a double Fourier transform of the function f (R̄), J0 (·) is a zero-order Bessel function of the first kind,
p. v. denotes an integral in the sense of the principal value and �1 is the real positive root of the equation ω̄2 = S(k)
which is identical to Eq. (2.5).

Equations (2.2) and (2.4) are Helmholtz equations. In the general case, the corresponding Green’s function G(r, r1;
k) satisfies the equation

where �(·) is the Dirac delta-function. The requirement that the radiation condition is satisfied in the far field leads to
the representation

(2.6)

where H
(1)
0 (·) is a zero order Hankel function of the first kind. In the domain �1, Green’s function can be used in the

form (2.6) and it can also be expressed in terms of other cylindrical functions.3

By using Green’s theorem in the domain �1, we obtain

(2.7)

where �1 = 2 if the point r is within S, �1 = 1 if r is on a smooth segment of S and �1 = 1/2 if r is a corner point of the
rectangular domain �1.

A similar integral relation holds in the domain �2

(2.8)

where �2 = 2 if the point r is outside the contour S, �2 = 1 if r is in a smooth segment of S and �2 = 3/2 at the corner
points.

In order to solve the initial problem, it is necessary to determine the values of �m(r) and ∂�m(r)/∂n (m = 1, 2, 3) on
the contour S. By using points r, belonging to S, we obtain a system of four integral equations, the first three of which
are Eq. (2.7) when m = 1, 2, and 3 respectively, while the fourth equation, according to relations (1.5), (2.3) and (2.8)
has the form

(2.9)
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Two supplementary differential equations are obtained from the conditions of a free edge (1.6) which, according to
relations (1.3), (2.3) and (2.4), can be written in the form

(2.10)

(2.11)

By condition (1.7), the equality

must be satisfied at the corner points.
After determining the boundary-values of �m and ∂�m/∂n (m = 1, 2, 3) on the contour S, the buckling of the plate

can be calculated.
Using the asymptotic representation of Green’s function (2.6) for the domain �2 in the far field

the amplitudes of the surface waves far from the plate can be expressed in terms of Kochin’s function

We have

where nx and ny are the components of the vector of the outward normal to the contour S at the point x̄1, ȳ1.
In the numerical solution of Eqs. (2.7), (2.9)–(2.11), segments of the contour S, parallel to the x and y axes, are

subdivided into Nx and Ny equal segments respectively. The numerical method of solution has been described in Ref.
4 and an alternative method can be found in Ref. 3.

3. The waveguide properties of an elastic strip

It was shown in Ref. 5 that, for an elastic platform in the form of a strip of finite width and infinite length which
floats on shallow water, a natural waveguide mode can exist which propagates along the strip and decays exponentially
far from it. The necessary condition for a waveguide mode to exist is that there is a non-zero immersion of the platform.

We will now briefly describe the solution of the problem of determining the characteristics of waves trapped by an
elastic strip of width 2B. It is necessary to find a non-trivial solution of the homogeneous equations for the corresponding
velocity potentials, which follow from relations (1.2)–(1.4)

(3.1)

(3.2)
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with the free edge conditions, which follow from (1.3) and (1.6)

(3.3)

and the matching conditions, which are analogous to (1.5),

(3.4)

We will seek a solution of Eqs. (3.1) and (3.2) in the form

(3.5)

In the case of waves trapped by the elastic strip, it is necessary that the following conditions should be satisfied in the
far field

according to which the solution for �2 (x), when account is taken of relations (3.2) and (3.5), has the form

where �± are unknown constants. The value of 	 must be real and positive and, consequently, 
 > k0. This inequality
implies that normal oscillations of the elastic strip cannot be excited by the free surface waves since for these waves
we always have 
 ≤ k0 (see Ref. 6, for example).

It was shown in Ref. 5 that the normal oscillations of an elastic strip are symmetrical about to the y axis. By virtue
of this condition, the solution for the function �1(x) can be written in the form

(3.6)

where cm are unknown constants and the values of �m are determined from an equation which is analogous to (2.5)
after substituting (3.5), into Eq. (3.1), taking account of expression (3.6). From the boundary conditions (3.3) and the
matching conditions (3.4) we obtain a homogeneous system of linear fourth-order algebraic equations for determining
�+, c1, c2, c3. Those values of � for which the determinant of this system vanishes are called the natural frequencies
of the elastic strip.

4. Results of calculations

The numerical results presented below were obtained for two versions of the choice of elastic strip parameters:

1) a laboratory model of a floating airport4

2) a design for a real floating airport3
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Fig. 1.

In both cases, the liquid density � = 103 kg/m3 and Poisson’s ratio of the plate � = 0.3. First we will present the
characteristics of the natural frequencies for an elastic strip of width 2B and the values of D, h and d indicated for the
two versions. As was shown in Ref. 5, a waveguide mode only exists when d > 0 and in the frequency range 0 < � < �*.
In the process, the corresponding wave number 
 only very slightly exceeds the value ω/

√
gh (see Ref. 5, Fig. 1). The

values of �* are: 1.312 s−1 (ω̄∗ = 0.209) for version 1 and 0.199 s−1 ω̄∗ = 0.450 for version 2. The relative excess of

 above the value ω/

√
gh was no greater than 2%.

Graphs of ω̄∗ against the dimensionless value of the immersion of the elastic strip d̄ for the parameters corresponding
to version 1 (curve 1) and version 2 (curve 2) are shown in Fig. 1. When the immersion increases, the range of frequencies
for which a waveguide mode exists expands monotonically.

The action of a periodic pressure on a rectangular plate was investigated for the function

In all the calculations presented below, the radius of the domain of application of the pressure was equal to l = 2h
and the centre of this domain was located on the central line of the plate (x0 = 0).

The isolines of the amplitudes of the normal flexures of the plate are shown in Fig. 2 for version 2 and ȳ0 = −25
when ω̄ = 0.3 (the upper half of Fig. 2) and ω̄ = 0.6 (the lower half). The isolines of the function 102 × |W|/a are
drawn out with levels from 1 to 15 with a step size of 2. The values of |W|/a at the centre of the domain where pressure
is applied are equal to 0.354 and 0.285 when ω̄ = 0.3 and ω̄ = 0.6 respectively. The calculations were carried out for
Nx = 6 and Ny = 30 and a further increase in these parameters hardly changed the results. The same values of Nx and
Ny were used below in all the calculations carried out for a ratio of the sides of a rectangular plate L/B = 5.

The effect of the site where the external pressure was applied on the behaviour of the plate is shown in Fig. 3 for
version 1 when ω̄ = 0.4. The centre of the domain where the pressure was applied is located at the point y0 = 0 and
ȳ0 = −15 for the upper and lower halves of the figure respectively. The isolines of the function 102 × |W|/a are drawn
out from 2 to 11 with a step size of 1.

More detailed information concerning the behaviour of |W|/a in the centre line x = 0 (the solid curves) and at the
edge of the plate |x| = B (the dashed curves) is shown in Fig. 4 for y0 = 0 (curves 1) and ȳ0 = −15 (curves 2).

It is clear from an analysis of the results presented in Figs. 2 to 4 that, when ω̄ > ω̄∗, the domains of significant
buckling of the plate correspond not only to the central part of the domain where the pressure is applied but also to

Fig. 2.
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Fig. 3.

Fig. 4.

the plate edges. At the same time, the pattern of the amplitude distribution of the oscillations of the bucklings in the
neighbourhood of the domain where the pressure is applied up to the closest edges of the plate depend only slightly
on the value of y0. Near the plate edges, the amplitudes of its bucklings barely change in the transverse direction.

The behaviour of the surface waves far from the elastic plate is conveniently described using a beam pattern. The
dependence of Q = |H(ω̄, θ)|/√8πω̄ on the angle 
 is represented in polar coordinates in Fig. 5. Here, the left-hand
halves of Fig. 5, a and b correspond to plates with a ratio of the sides L/B = 5 and the right-hand halves correspond to
longer plates with L/B = 7. Calculations were carried out for L/B = 7 when Nx = 6, Ny = 42. The left-hand side of Fig. 5,
a was constructed for version 1 when ȳ0 = −15 and the right-hand side with the same values of D, h, d and B but
for L = 21 m and ȳ0 = −27. The solid curves in Fig. 5, a correspond to a frequency ω̄ = 0.1, the dashed curves to a
frequency ω̄ = ω̄∗ = 0.209, and the dot-dash curves to ω̄ = 0.4. The left-hand side of Fig. 5, b corresponds to version
2 when ȳ0 = −25 and the right-hand side to the same values of D, h, d and B but for L = 7 km and ȳ0 = −45. The solid

Fig. 5.
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curves in Fig. 5, b correspond to the frequency ω̄ = 0.3, the dashed curves to ω̄ = ω̄∗ = 0.45 and the dot-dash curves
to ω̄ = 0.6.

It is clear that the forms of the beam patterns for the frequencies ω̄ < ω̄∗ and ω̄ > ω̄∗ are different. For a sufficiently
low limiting value of the waveguide mode (Fig. 5, a), the beam pattern when ω̄ ≤ ω̄∗ is close to a circle. This means
that the amplitudes of the surface waves are practically equal in all directions. However, when ω̄∗ is increased, the
waveguide character of the plate shows itself to a greater extent: surface waves of the greatest amplitude propagate in
the direction of a long side of the plate, that is, along the y-axis. This effect is reinforced as the length of the plate is
increased (see Fig. 5, b).

In the case of external oscillations with a frequency ω̄ > ω̄∗, a reduction in the scattering of surface waves is observed
along the plate, particularly in the direction of its far end with respect to the pressure domain.

The above results show that the proposed method is an effective technique for investigating the behaviour of an
elastic plate floating on shallow water under the action of an external low-frequency periodic load. The method can be
used in the case of a bounded plate of arbitrary shape. As was shown earlier in the case of a circular plate,2 the finite
dimensions of a plate have a considerable effect on the characteristics of its oscillations under the action of a periodic
load. An elongated rectangular plate can possess waveguide properties just like a floating elastic strip of infinite length.
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